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Flow reactors are widely used in the chemical  industry for purposes 
of catalytic reactions [1,2]. Calculation of reactors of this type, even 
in one-dimemional  approximation, is complicated and possible only 
with the use of numerical methods [1, 3]. Such calculations make it 
possible to find the steady-state distribution of temperature and con- 
centration in the chemical  reactor if one exists; in general, however, 
there may be other steady-state regimes which may be preferable from 
the standpoint of obtaining a different degree of conversion of the 
starting product, operating stability, etc. 

In this connection special interest attaches to the question of the 
existence and number of steady-state solutions of the system of equa- 
tions describing the reactor process. 

This problem was previously considered in [4-7].  Thus, in [4, 5] 
it was pointed out that in certain special cases more than one steady- 
state regime may exist. In [6, 7] the question of sufficient conditions 
of uniqueness was investigated. In [7] it was shown that the steady- 
state regime is unique in the ease of short reactors or a dilute mixture 
of reactants. In [8] the problem of the existence and uniqueness of the 
steady-state regime was examined for a chain reaction model with 
direct application of the general theorems of functional analysis. 

The present paper includes an analysis of a very simple mathe-  
matical  model of an adiabatic chemical  reactor in which an exother- 

mic  or endothermie reaction takes place. It is established that in the 
case of an endothermic process a unique steady-state regime always 
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exists. In the exothermic case the problem of the steady-state regime 
also always has a solution which, however, may be nonunique; the 
possibility of the existence of several steady-state regimes, associated 
with the form of the temperature dependence of the heat release rate, 
is substantiated. 

w F o r m u l a t i o n  o f  t h e  p r o b l e m .  G i v e n  a n u m b e r  
of  s i m p l i f y i n g  a s s u m p t i o n s  t h e  s t e a d y - s t a t e  p r o c e s s e s  

o f  h e a t  a n d  m a s s  t r a n s f e r  i n  a f l o w  r e a c t o r  c a n  b e  d e -  

s c r i b e d  b y  a s y s t e m  of  e q u a t i o n s  of  d i f f u s i o n  a n d  h e a t  

c o n d u c t i o n  i n  t h e  f o r m  [1]: 

p r~ d ~  d ~  Z,-d-x2-- m ~ -}- pr (~ , T)-- - -0 ,  (1.1) 

-2u d'-Tdx~__rndxxdT _~_ h r ( ~ ,  T)  = 0 .  (1.2)  

It i s  a s s u m e d  t h a t  t h e  r e a c t o r  i s  a c y l i n d r i c a l  v e s -  

s e l  w i t h  i m p e r m e a b l e  a n d  n o n - h e a t - c o n d u c t i n g  l a t e r a l  

s u r f a c e s .  Al l  t h e  p a r a m e t e r s  a r e  a v e r a g e d  o v e r  t h e  

r e a c t o r  c r o s s  s e c t i o n  ( o n e - d i m e n s i o n a l  p r o b l e m ) .  T h e  

r e a c t o r  i s  f i l l e d  w i t h  a p o r o u s  c a t a l y t i c  m e d i u m  i n  

w h i c h  t h e  r e a c t i o n  t a k e s  p l a c e ;  ~ i s  t h e  y i e l d  o r  e x -  

t e n t  o f  t h e  r e a c t i o n  i n  m o l e s  p e r  u n i t  v o l u m e ,  T i s  

temperature. The diffusion and heat conduction pro- 

cesses in the reactor are characterized by the effec- 

tive l o n g i t u d i n a l  d i f f u s i o n  c o e f f i c i e n t  D a n d  t h e r m a l  

c o n d u c t i v i t y ,  t h e  d i f f u s i o n  c o e f f i c i e n t s  b e i n g  t h e  s a m e  

f o r  a l l  t h e  s u b s t a n c e s  p a r t i c i p a t i n g  in  t h e  r e a c t i o n ;  

m = pu ,  w h e r e  p i s  t h e  l o c a l  d e n s i t y  o f  t h e  m i x t u r e  o f  
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reactants and reaction products, and u is the filtration 
rate. The specific heat c takes into account the pre- 
sence of the catalyst. The function r(}, T) describes 
the relation between the local reaction rate in moles 
per unit volume per unit time, temperature and yield; 
h is the heat of reaction (when h > 0 the reaction is 
exothermic; when h < 0, endothermic). 

Let the reactor (zone occupied by catalyst) occupy 
a region 0 -< x -< l .  We will consider the case when 
the regions "before" and "after" the reactor--catalyst 
bed--are "empty" volumes free of catalyst extending 
indefinitely into the regions -~o < x < O and I < x < oo 
and having cross sections equal to the cross section 
of the catalyst zone. In this case the boundary condi- 
tions for Eqs. (1.1) and (1.2) are easily obtained by 
considering Eqs. (1.1) and (1.2) in the empty volumes 
(where the reaction rate is zero, and the transport 
coefficients and specific heat have corresponding 

o o~,% 

Fig. 3 

values, generally speaking, different from D, ~, and 
c) and substituting the conditions of continuity of con- 
centrations, temperature, and diffusion and heat fluxes 
at the reactor inlet and outlet [9, 10]. We obtain 

- -  pDdd~x + rn~ = 0 ' x = 0 .  d ~ = 0 ,  x = l  (1.3)  
' d x  ' 
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dT dT 
c dx "~- m T =  i n t o ,  x =  O. ----- 0, x =  Z. (1.4) , 

Here,  T o is the t e m p e r a t u r e  of the s ta r t ing  mix tu re .  
We assume  that 

u / c =  pD, or  X ~ u / p c = D .  (1.5) 

Using (1.5), f rom (1.1) and (1.2) we obtain the 
equation 

h 
~) = 0, 

in tegra t ion of which with al lowance for  boundary con- 
dit ions (1.3) and (1.4) g ives  

h 
T (x) - -  ~ ~ (x) = To. (1.6) 

Equation (1.6) e s t ab l i shes  a one - to -one  c o r r e s -  
pondence between the r eac t i on  y ie ld  and t e m p e r a t u r e  
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at any sect ion of the r e a c t o r  ( s imi la r i ty  of the y ie ld  
and t e m p e r a t u r e  fields).  In this case  

r(~, T) = r (pc (T  0 - T ) / h ,  T)  = ( I ) ( T ) .  

Consequently,  when (1.5) is sat isf ied,  to solve the 
problem it is suff ic ient  to cons ider  only (1.2) with 
boundary conditions (1.4) for the t empera tu re .  

In the genera l  case  the function O(T) is nonl inear ;  

the re fo re ,  genera l ly  speaking, the p rob lem (1.2), (1.4) 
does not have an analyt ic  solution. The t e m p e r a t u r e  
and concent ra t ion  d is t r ibut ions  can be found only by 
using approx imate  methods  o r  numer i ca l  in tegrat ion.  
We will  cons ider  the p rob lem of the ex i s tence  and num- 
be r  of solutions.  F i r s t ,  we will  inves t iga te  the genera l  
form of the function ~(T). 

The c lass ica l  exp re s s ion  for the r a t e  of an i r r e -  
ve r s ib l e  chemica l  r eac t ion  when the s ta r t ing  m i x t u r e  
is s to i ch iomet r i c  has the f o r m  

(1.7) 

Here,  k 0 is the preexponent ia l  o r  f requency factor ,  E 
is the act ivat ion energy,  R is the un ive r sa l  gas con- 
stant and /3 is the total o rde r  of the reac t ion .  The 
quantity ~m is the max imum yield of the reac t ion  c o r -  
responding to total convers ion  of the s ta r t ing  subs tan-  
ces  into reac t ion  products .  

With s im i l a r i t y  between the reac t ion  yield and the 
t e m p e r a t u r e  f ields,  in accordance  with (1.6) the m a x i -  
mum yield ~m cor responds  to the t e m p e r a t u r e  

In the event  of an exo the rmic  react ion ,  T m is the 
max imum poss ib le  t empera tu re ,  and in the event of 
an endothermic  r eac t ion  the min imum poss ib le  t e m -  
p e r a t u r e  (in the l a t t e r  case  it  is a s sumed  that the in i -  
t ia l  t e m p e r a t u r e  T o is suff icient ly high). However,  
the value of T m, l ike ~m, cannot be r eached  in a r e -  
ac tor  of finite length (see below); t he re fo re  

To ~ T ~ T.~ (exothermic reaction) ; (1.8) 

T m ~ T ~ T O (endothermic reaction). (1.9) 

Starting f rom (1.6)-(1.9) we can draw the fol low- 
ing qual i ta t ive conclusions  r e l a t ing  to the behavior  of 
the function ~(T) : 

1) the function ~(T) > 0 at all p e r m i s s i b l e  va lues  
of T sat isfying inequal i t ies  (1.8) or  (1.9); 

2) the function r  m) = 0; 
3) in the case  of an exo the rmic  r eac t ion  ~(T) at 

f i r s t  i n c r e a s e s  monotonica l ly  with i n c r e a s e  in T, 
r eaches  a maximum,  and t h e n d e c r e a s e s  monotonical ly;  

4) in the case  of an endothermic  reac t ion  ~(T) in-  
c r e a s e s  monotonical ly .  

We note that the dependence of reac t ion  r a t e  on 
yield and t e m p e r a t u r e  may have a fo rm di f ferent  f rom 
(1.7). However,  the p rope r t i e s  of the function ~(T): 
enumera ted  above c l ea r ly  r e m a i n  unchanged for  a 
broad c l a s s  of chemica l  r eac t ions .  

For  convenience,  we will  unify the formula t ion  of 
the problem for  exo the rmic  and endo the rmic  reac t ions .  
We take the f r e e s t r e a m  t e m p e r a t u r e  T o as a r e f e r e n c e  
value and in t roduce  the va r i ab le  

~T-- To (exothermlc reaction) 
0 = I T - -  To I = (To-- T (endothermic reaction) (1.10) 

and the function 

F ( O ) =  I h l @ ( T o : k O )  (1.11) 

Here,  a plus sign is taken in the case  of an exo-  

the rmic ,  and a minus  sign in the case  of an endother -  
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mic  react ion.  Using (1.10) and (1.11), we wr i t e  the 
problem (1.2), (1.4) in the following fo rm:  

U dO d ~  ~ -  ~ @ F ( 0 ) = 0 ,  0 ~ 0 g 0 ~ ,  (1.12) 

dO / d x  - -  UO = O, z=0 ;  dO / d x  = O, x = l 

(U ~ .~ (~)--1 0m = [T~n__ To I), (1.13) 

h ~ It follows f rom (1.11) and (1.8), (1.9) that the bas ic  
Tm T0 + 

~ ' ~ "  p rope r t i e s  of the function F(0) a r e  the same  as those 
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of the  func t ion  @(T), e x c e p t  tha t  in t he  c a s e  of an e n -  
d o t h e r m i c  r e a c t i o n  the m o n o t o n i c  i n c r e a s e  of O(T) 
c o r r e s p o n d s  to a m o n o t o n i c  d e c r e a s e  of F(0).  The  g e n -  
o ra l  b e h a v i o r  of the  func t ion  F(0) i s  i l l u s t r a t e d  in F ig .  

1 fo r  e x o t h e r m i c  (a) and e n d o t h e r m i c  (b) r e a c t i o n s .  

w Existence of steady-state regime.  We will first show that the 

function O(x), the solution of the problem (1.12), (1.13), increases 
monotonically provided that F(O) > 0. With this in mind we multiply 
Eq. (1.12) by exp( -Ux)  and integrate with respect to x from x m l .  
Using the second of conditions (1.13), we have 

l 

dx -- eU~: e-UXF (0) dx . (2.1) 
x 

It follows from (2.1) that d0/dx > 0 at 0 -< x < l .  
In view of the monotonic behavior of the function 0(x) there is a 

one- to-one correspondence between 0 and x (0 -< 0 -< Om, 0 < x --< 1 ). 
We introduce the function p(0) = d0/dx and formulate the problem 
(t .12),  (1.13) for the function p(0). We have 

dp 
p ~ f f  - -  up + ~ (o) = o, ( 2 .2 )  

p = 0, 0 = 01 (0 (0  = 01),  (2 .8)  

p = u0~, 0 = 0~ (0 (o) = %). {2.4) 

In problem (2.2)-(2.4) the quantities Of and 0 i are not given and 
must be determined in the process of solunon. 

We provisionally fix Of. Then problem (2.2), (2.8) is the Cauchy 
problem. Its solution always exists and is unique. Taking 0y as para-  
meter,  we write this solution in the form p = p(O,ef).  

We express the temperature at the reactor inlet in terms of the 
outlet temperature.  The corresponding relation between 0 i and Of 
follows from boundary conditions (2.4) and has the form 

p (0~, Of) - -  U0i = 0. 

The value of Of is found from the condition 

~ I 

dO (2.5) 
z = ]~ (o, of)  " 

~ o I) 

Condition (2.8) selects the desired solutions of problem (1.12), 
(1.13} among the set of solutions of problem (2.2)-(2.4).  

The temperature distribution in the reactor is determined from the 
implicit  expression 

0i 

dO - -  t .  (2.6) 
+ p (0, 0t) 

Thus, the question of the existence and number of solutions of the 
problem (1.12), r reduces to the investigation of the existence 
and number of solutions of the problem (2.2)-(2.5).  

We note that the above arguments leading to the formulation of 
the problem in the form (2.2)-(2.5) retain their force if we paramet-  
rize the solutions of Eq. (2.2) taking as parameter  0 i, i . e . ,  the reac-  
tor inlet temperature.  In this case the solutions of (2.2) with boundary 
condition (2.4) have the form p = p(Oi,O), the relation between 0 i 
and Of follows from boundary condition (2.3), and so on. From the 
formal standpoint this approach is completely equivalent to that de-  
scribed above; however, parametrization of the solutions using Oj as 
parameter  is preferable for purposes of analysis. We will consider the 
problem of the existence of solutions of problem (2.2)-(2.5).  For this 
purpose we investigate the behavior of the integral curves of gq. (2.2). 
The field of these integral curves is shown in Fig. 2. The isocline of 

zero slope is the curve p0(O) = U'IF(O) represented by a heavy Iine in 
Fig. 2. 

Above this llne the integral curves have positive slope, below it,  
negative slope. The curves intersect the straight line p = 0 at right 

angles. The point @ = (~m, p = 0 is a singular point (if, for example, 
F'(am) ~ O, this is a saddle point). Figure 2 also shows (dashed line) 

the straight line p = UO, which by virtue of boundary eonditon (2.4) 

must be the termination of the integral curves-solutions of the prob- 

lem (2.2), (2.3)--leaving points O = Of, p = 0 and entering the upper 
half-plane.  From an analysis of the field of directions of the integral 
curves it follows that from any point in the interval (0,Ore) an integral 
curve enters the upper half-plane m intersect the straight line p = U0 
at some point with abscissa 0 = O i. Thus, to each value of Of there 
corresponds a value of Oi. 

At fixed Of, by virtue of the uniqueness of the solution of problem 

(2.2), <2.3), there is only one integral curve passing through the point 
0 = ~ f ,p  = 0; consequently, to each value of Of there corresponds a 
unique value of Oi. Clearly, not every integral curve of this type de- 
fines a desired solution of the problem (1.12), (1.1a), since if of is 
arbitrarily assigned the solution p(0,0f)  may not satisfy integral con- 
dition (2.5). 

We will now consider condition (2.5), which associates a value of / 
with each value of Of and hence determines the function Z (0f) .  It is 
easy to see that the function l(Of) is continuous on the interval (O, ~$-n). 
This follows from the continuity of  the function 0i = 0i(Of) on that 
interval and the continuity of the function p- l (0,0f)  at all 0 # Of. 
In fact, at 0 = Of the function p'l(O,0f) has a singularity; however, 
it can be shown that this singularity is integrable i f 0 f  # 0 m.  Actu- 
ally, it follows from (2.2), (2.3) that  the point 0 = Of is an algebraic 

moving critical point of the integral of Eq. (2.2) satisfying condition 
(2.a), the solution of problem (2.2), (2,3) in a neighborhood of that 
point having the form 

p (0, 0t) = l/'2--~O(0f) (0f - -  0Y ~ - -  

- -  " / s u  (0y -- 0) + 0 frO: -- 0)~/'). (2.7) 

We will now examine the behavior of the function 1 (Of) as Of --~ 
--~ 0 and 0f---~ 0m. From an analysis of the integral curve field it fol-  
lows that as 0f--* 0 necessarily 0i"~ 0. Therefore, using (2.7), from 
(2.5) we conclude that 

l = 2 v, I F  (01)1 - ' / '  (01 - -  O0 ~,'-~ + 0 (Oj - -  %) ,  

i . e . ,  Z --~ 0 as Of "> O. Similarly we conclude that l -* ~o as Of --~ 
--~ 0m.  We note that the latter implies the impossibility of teaching 
the extremal temperature (maximum in the case of an exothermic 
reaction and minimum in the case of an endothermic reaction) and 
hence total conversion of one of the reactants in a reactor of finite 
length. 

It has just been shown that the function /(Of) defined by condition 
(2.5) is continuous on the interval (0 ,0m) and takes the values 0 and 
at the ends of that interval. Hence it follows that with any given value 
of / ,  where 0 < l < ~o condition (2.5) associates at least one value 
of Of in the interval (O,Om) , i . e . ,  to any reactor length there cor- 
responds at least one value of the outlet temperature.  In view of the 
above reasoning, this implies the existence of a solution of the prob- 
lem (2.2)-(2.5) and hence of the problem (1.12), (1.13). Thus, steady 
reactor states always exist irrespective of the type of reaction (exother- 
mic or endothermie). 

83. l~dothermic reaction, Uniqueness of steady-state regime.  As 
already noted, to any value 0f(0 < 0]  < 0m) on the 0p plane there 
uniquely corresponds an integral curve p(O, Of). The point of intersec- 
tion of this curve and initial straight line p = U0 has the coordinates 
0 = 0i, p = U0 i. For each Of Eq. (2.3) enables us to calculate a value 
of 1 and hence determines the function l!Of) or the inverse function 
Of(U). 

Obviously, if as l varies on the interval (%0o) the function Of( 1 ) 
is unique, then to any value of l there correspond unique values of 
0f ,O i and a single function p(0,0f)  satisfying the problem (2.2)-(2.5).  

In this case the problem of the operating regime of the chemical  reac- 
tor has a unique solution. However, if the function 0 f ( l )  is such that 
to any value Z = l .  there correspond several values of Of, the problem 
of the operating regime of a chemical  reactor of length l,, has several 
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solutiom and the number of solutions is equal to the number of values 
of Of corresponding to the given l . .  The situation described is illus- 
trated in Fig. 3, where the continuous curve corresponds to the case 
of a unique solntion and the broken line to the case of three solutions 
at l : l , .  

Using Eq. (2.2), we write (2.5) in the form: 

el el 
ii U d P i dp o -  ~ ~ - ~ - ~  ao . 

l (0i) = o st)  o i (ot )  

Then, integrating by parts, and using conditions (2.3), (2.4), we 

obtain 

s I 
U UOi , 

z (ol) = t ~(o) dO + ~(0~) ~- 
oiCe 1) 

d I +i' 
oi(of) 

(3 .1 )  

We find the derivative of the function l(Of). Differentiating (3.1), we 
obtain 

0! 

d01 - e (0i) + ?TOS oTj dO 
0 i 

(3.2) 

If the right side of (3.2) takes positive values at all permissible values 
of 0f, the function l(Of) is monotonic and, consequently, the solution 
of the problem is unique. Thus, the question of the uniqueness of the 
solution of problem (2.2)-(2.5) can be solved by investigating the sign 
of the right side of expression (3.2). 

In the case of an endothermic reaction the function F(0) decreases 
monotonically. Therefore the first factor in the integrand in (3.2) takes 
only positive values o'n the entire interval of integration. We will esta- 
blish the sign of the second factor. Differentiating Eq. (2.2) with res- 
pect to Of, we find 

a lap  1 e(o) ap 

We integrate Eq. (3.3) with respect to 0, assuming that F(O) and 
p = p(0,0f) are known functions and having determined the constant 
of integration from the value of the derivative ap/0Of, at some point, 
for exampte, the point 0 = 0i, we obtain 

O 
Op ' F 

0p __ (sT/)0 e e x p  {-- f-~-d0} (3.4) O01 = . �9 
0i 

From (3.4) it follows that if the derivative 0p/00f at the point 
0 = 0 i is a positive quantity, this derivative retains its positive value 
over the entire interval in question. As already noted, the constant of 
integration can be determined from the value of the derivative 0p/00f 
at any point on the interval [0i,0f]; therefore, positiveness on the en- 
tire interval follows from the positiveness of 0p/00f at any individual 
point within that range. 

An analysis of the field of integral curves shows that as Of increases 
the integral curves in the p, 0 plane corresponding to a larger Of pass 
above the integral curves corresponding to smaller values of Of. This 
means that at given 0 the quantity p(0,0f) increases with increase in 
of, i . e . ,  0p/0Of > 0. 

For the sake of clariry, Fig. 4 gives a qualitative picture of the 
function p(Oi,O) representing the surface above the plane 0, 0 i. 

Thus, both factors in the integrand on the right side of (3.2) take 
only positive values, so that in the ease of an endothermie reaction 
the inequality 

dZ / dO z > 0 (3.5) 

is satisfied at any permissible values 0fe3r 
Consequently, the function l(Of) is monotonic, and the problem of 

the steady-state operating regime of an endothermic macter has a 
unique solution, 

w Exotlmrmic reaction; In the case of an exothermic reaction the 
function F(0) is nonmonotonic, at a certain value 0 = O* it reaches a 
maximum (Fig. la).  

In w it was shown that if the entire region of permissible tempera- 
tures, i . e . ,  the interval 0 < O < 0m, is comidered, a steady-state 
regime always exists. We will show that 1) on the interval 0 < 0 < O*, 
where the function F(0) increases, a steady-state regime may be lack- 
ing, if the function F(O) grows sufficiently rapidly; 2) over the entire 
region of permissible values of the temperature 0 < 0 < 0 m the problem 
may have more than one solution. 

We will consider the representation of problem (1.12), (1.13) in the 
form of an integral equation. To this end we return to Eq. (2.1) and in- 
tegrate it with respect to x, using the first of conditiom{1.13). We 
obtain 

i x l 

8 = -  0- F (8)e-UXdx+ e Ux F (8) e-UXdxdx. (4.1) 
0 0 X 

in Eq. (4.1) the first term corresponds to the value of the reactor 
inlet temperature. 

Since the function 0(x) increases monotonically (see w we have 
min0(x) = e(0) = 0 i. Then on the interval [0,0"], in view of the 
growth of the function F(0), from (4.1) we have 

i - -  exp (-- Ul) 
8i > US F (OiL (4.2) 

We will consider the functions F(0) satisfying the condition 

OF (0)/00 ~ K, K > 0. (4.3) 

From (4.3) and the positiveness of F(O) it follows that K0i--< F(0i) 
and from inequality (4.2) that problem (1.12), (1.13) does not have 
solutiom at 

In (t - -  U ~ / K) (4.4) 
t>~ U 

Condition (4.4) means that there is no solution at sufficiently small 

U and sufficiently large t (see Fig. 5, where the region of absence of 
solutiom on the plane /, U is shaded). The physical significance of 
this is obvious: for small velocities and a long reactor with a high- 
energy exothermic reaction and no heat losses through the side walls 
it is not possible for all the heat to be removed through the front (x = 
= 0) and rear (x = l) ends of the reactor and the temperature rises 
sharply (analogy with thermal explosion). 

We will now consider the question of the number of steady-state 
reactor regimes for the entire interval 0 < O < era. We return to the 
analysis of the function l(Of) began in w In this case the function 
F(0) decreases monotonically; therefore the second term on the right 
side of (3.2) may take negative values. Since on the entire interval of 
variation of Of the function l(Of) varies from 0 (at Of = 0) to .0 at 
(Of = 0m), there follows the possibility of a nonmonotonic variation 
of the function l(O]). If the function/(Of) is nonmonotonic, certain 
values o f / .  may correspond to several values of Of and, consequently, 
problem (2.2)-(2.5) will have several solutiom at those values of l . .  

The number of solutions is determined by the number of points of 
intersection of the straight line / = / .  and the curve/(Of) (see Fig. 3) 
and must be odd. The nonuniqueness of the solutlon, i . e . ,  the pre- 
sence of intervals on which the function l(ef) decreases, is associated 
with the form of the function F(e). 

In the plane 0, p we will consider two solutions of problem (2.2), 
(2.3) corresponding to two different values of Of equal to 0~ l) and Of, 
where 0~ i) < 81 To each solution there corresponds a value of 0 i , 
which We will denote by ei (1) and {9 i, respectively. Applying (2.5) to 
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each of the solutions, we obtain 

o} i) 

t - - I  ~  i F t t ~ d 0 - -  
ii 4 kp(O~), O) p (Oi, O) ] 

o i u/ 
dO {, dO ~_ _ _ .  

The inequality 

(4.5) 

p (04, O) > p (O {1), 1 , O) (4.6) 

holds for the func*iom p(Oi, O)and p (0~ ~), O) on the interval 04 ~ 0 ~ O~ 1) �9 
Moreover, 

p(o~, 0 ) > o ,  p (@) ,  0 ) > o .  (4d)  

In view of (4.0) and (4.7), the first two terms on the right side of 
(4,5) have values less than zero, so that their sum is equal to some 
finite negative number, whereas the third term in (4.5) is equal m a 
positive number. 

At values of Of corresponding to the interval of variation of l, of 
which l (O f )  is a monotonically increasing function, the sum of the in- 
tegrals in (4.5) is greater than zero. 

At values of Of corresponding to the region in which l (O])  is a de- 

creasing function, so that one and the same l corresponds to not less 
than three solutions of the problem (2.2)-(2,5), the sum of the inte-  
grals in (4.5) must be negative. 

The behavior of the functiom p(0 i, 0) and p (0~ 1), 0) is determined 
by the character of the function F(0). We will show that the nature of 
variation of the function F(0) on the half-open interval 0i(1) % 0 ~< 0i, 
may be such that the corresponding value of l (O f )  is located on the 
descending branch of the function l ( O f ) .  On the half-open interval in 
question the function F(0) must be such that the last integral on the 
right side of (4.5) is less than the sum of the moduli of the first two 
integrals, whose value does not depend on the form of the function F(0) 
at 0 ~ 0f (t)" 

For example,  let us take the function F(0) a t0  ~ 0S(1)in the form 

F ~ (0) = 1/2ao ~" @ (2aoa.~ - -  2/9U ~") (0? - -  O) - -  

- -  ~'/3a2U (0 t - -  0) V* + 8~,.up (Or - -  0)% 

ao = 81~.zJl~'pl + "r 'i~ (pl" + VsU), 

a2 = __ t/2.r-z,12pl __ .~-'h (Pl' - -  1/aU), p (01, 0) 18=@ ) = Pl, 

op  (% o) / oo Io=o~t) = m', T = 0 s - -  0} r) . (4.8) 

The quantity O f  in (4.8) plays the part of a parameter whose speci-  
fic value will be determined Iater. 

The solution of Eq. (2.2) with condition (2.3) on the interval 
0} t) % 01, where the function F(0) is found from (4.8), has the term 

p~ (0) = a0 (0 s - -  O) '1~ - -  % U  (0 s - -  O) -I- a~ (01 - -  O) ' I ' .  

It can be seenthat  the solution p~ (O) and its derivative are "joined" 
with the solution p(0i,  0) at the point O = 0} 1), so that, taken together, 
the functions p (0i, 0) (0 i ~ 0 ~ 0}1)), p0 (0) (0~ t) < 0 ~ Or) will be a 
solution of the problem (2.2)-(2.4) on the entire interval 0 i -< 0--< Of 
if 

F ( 0 ) = F ( 0 ) ,  0 i~0}1) ;  F (0 )=F ~  0}1)~0-%0 I .  (4.9) 

In this case the last integral on the right side of (4.5) can be writ- 
ten in the explicit form: 

2 ao - - ~ / ~ g t  @ a2t ~ " (4.10) 
o 

It follows from (4.8) that by reducing 0f (and consequently r )  we 
can make the value of the integral (4.10) less than any predetermined 

number, i . e . ,  there is always a value Of = 0~ I such that at 01 < 0~ t 
the inequality 

dO 1 

p (0p 0) 0~ r) 

o i 
1 ~, --(~-d0 (4.11) 

P(~ ] d ~  ,fl)pt~4 ,o)  

will be satisfied. 
From (4.11), in accordance with (4.5), there follows 

l < l (1) . (4.12) 

Thus, if the function F(0) has the form (4.9). there are always 
values of Of (we recall that the quantity Of enters into the function 
F'(0) as a parameter) at which the solution Eq. (2.2) on the interval 

0(1) I ~ 0 ~ 0 1 ,  joined by the continuous first derivative with the 
solution of Eq. (2.2) on the interval 0 i % 0 % 0}l),satisfies inequality 
(4.11). It can be asserted that to the corresponding value of l(l~) there 
correspond at least three selutiom of the probtem (2.2)-(2.5). 

We note that the approximation of the function F~ is not too 
artificial. True, at the point 0=0~ 1) the function F~ is "joined" 
with the function F(0) with a discontinuity of the first derivative. Ob- 
viously, a smooth joint at that point cannot seriously affect the value 
of the integral (4.10) and hence inequality (4.12). 

The authors thank G. I. Barenblatt, A, I. Leonov, L. M. Pis 'men, 
and u  I. Kharkats for discussing and commenting on the work. 
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